Adding support to the ALMA Common Software for Real-Time
operations through the usage of a POSIX-compliant RTOS

RODRIGO J. TOBAR?, MAURICIO A. ARAYA?, TOMAS JUERGES® AND HORST H. VON BRAND®
‘. “Computer Systems Research Group, Universidad Técnica Federico Santa Maria (UTFSM), Valparaiso, Chile

“Institut National de Recherche en Informatique et Automatique (INRIA), Nancy, France
“National Radio Astronomy Observatory (NRAO), Socorro, NM, USA

ABSTRACT
The ALMA Common Software (ACS) framework lacks of the real-time capabilities to control the antennas’ instrumentation — as has been probed by previous works —, which has
lead to non-portable workarounds to the problem. Indeed, the time service used in ACS, based in the Container/Component model, presents plenty of results that confirm this
statement. This work addresses the problem of design and integrate a real-time service for ACS, providing to the framework an implementation such that the control operations over
the different instruments could be done within real-time constraints. This implementation is compared with the current time service, showing the difference between the two systems
when subjecting them to common scenarios. Also, the new implementation is done following the POSIX specification, ensuring interoperability and portability through different
operating systems.

) a)

Problem Experiments
The ALMA Common Software (ACS) [1] is the common distributed control framework used throughout the entire ALMA project [2]. The experiment setup used to test our new implementation consid-
This framework provides common patterns and facilities for software development and distributed control, but does not offer hard ers four timestamps that repeat on each execution of the periodic
real-time capabilities to the users. ot orens . . N N real-time task, as shown in the figure on the left. Independently of
rea + B - - . . . g . .
N . . the realization of a periodic task execution, we consider the task as
This problem arises, for example, in the ACS Time Service. This framework subsystem is based in the Container/Component model [3,4], if it would be absolute periodic (¢) or relative periodic (¢) [5]. This
with a Ti mer component (CORBA Servant) in charge of triggering the executions of periodic tasks. This system has been proved to be ot T i R difference arises from the nature of each requirement: the time inter-
non hard real-time [5]. In the other hand, the real-time requirements of the ALMA project have been solved by means of solutions val from execution to execution of a task can be driven by an initial
outside the scope of ACS: special kernel-space modules are in charge of dealing with real-time operations, making them difficult to ure instant on time (¢(), or by the previous execution instant of the task
maintain and port to other systems. These features, instead, should be offered by the common framework. Our work presents a new (ta(i—1))- Since ty; represents the start of the execution of the real-
implementation of the ACS Time Service using the Linux RT_PREEMPT kernel, which aims to solve this problem. time task in the scheduling thread, we consider this instant as our
J main reference.
For a realization of the real-time task with IV executions and a period P, we collect the measured differences for the task when considered
™\ as an absolute periodic requirement (A, equation 2) and when considered as relative periodic (A,;, equation 3).
Linux RT_PREEMPT Dty = {00008y 0N ? Aver = {800, 0y 60!
One of the newest solutions in the world of the real-time operating systems (RTOS) is the usage of the Linux kernel with the Oaps =1+ P = (tai — o) 0 ifi=0 G

6:‘5‘ = { A1 Q
RT_PREEMPT patch [6]. This modification to the Linux kernel adds real-time capabilities to the operating systems, making it suitable for ! P = (tai = ta-1)) otherwise

hard real-time operations, even from the user-space. Its usage is currently growing up, at the point that its usage has been studied within Over these two set of data (Agps and A,.;) we calculate the maximum between the absolute value of the differences (jitter), and the root
the ALMA project [7]. To test the real-time capabilities of the patch, we stressed the test machine while running the cycl i ct est [8] square of the Mean Square Error (MSE) of the values as a measurement of the concentration of the differences around the mean value.
with the following tasks: We use two different deployments to check the Time Services:
Keornel RT PREEMPT oanilla e scp-ed a DVD iso image through the Ethernet interface, e One client: We register only one real-time task. This deployment measures the behavior of the system without stress.
Load avg. (max) 4.67(5.17) 4.43(4.57) e Copied once and again a big file to a new one. e Harmonic clients: We register six real-time tasks, the first with period P, the next with period 2P and so on. This stresses the
Interval | Priority | Min | Avg | Max | Min | Avg | Max . - . oy . system to meet several deadlines at the same time, and therefore introduces more difficulty to the problem.
00 0 3 77 37 1 3 id o Compiled a C++ application, cleaned it, and compiled it again.
600 59 19 2| 83 11 34| 585 e Ran the compiled application (Genetic Algorithm) For each case we used base periods of 4 [ms], 24 [ms] and 4§ [ms], simulating -the real-time requirements of the C.ONTROL.subsystem
1100 58 19 28 | 118 13 2% | 523 in the ALMA project [10]. The computer used for the experiments was a Pentium III (Coppermine) @644 Mhz with Arch Linux, and a
1600 57 14 30 | 104 12 27 | 721 The test longed 60 seconds, with 6 real-time threads running simul- 2.6.26.3-rt5 kernel.
2100 56 17 34| 187 12 30 | 789 taneously. The table at the left summarises the results for this setup,
2600 55 30 0| 166 12 28 | 516 showing the statistics for the differences between the theoretical and \ y
experimental values of the realization of the real-time tasks (in [us])
with a base interval of 100 [us].
With the obtained results, it is clear that the Linux RT_PREEMPT-patched kernel is superior that the original one regarding to the 4)
determinism on the timing of its operations, on at least one order of magnitude. Results
S These first results for a single client setup show a
high contrast between the two time services, and even
Soluti) worse results for the ACS Time Service than those One client Harmonic chionts
olution reported by [5], confirming the fact that the current - o Tl -
ACS Time Service does not offer real-time capabilities. Type Jitter [is] MSE 5] Jitter [1s] MSE [s]
The proposed solution is based in the Container/Com- 8! ACS | RT | ACS | RT ACS RT ACS RT

z In all cases our implementation had a better jitter,
i with differences up to 2 orders of magnitude (in ¢24)
with the jitter presented by the ACS Time Service
implementation. The differences are even more no-
torious for the harmonic clients case, where there are
differences of up to 4 orders of magnitude (in 6;). The

JAN

Oas 89 | 75 | 22.90 | 19.36 6127 | 60 1527.17 | 42.87
04 | 2309 | 76 | 34.05 | 44.82 4017 | 58 1514.2 | 39.47
04 1453 | 173 | 20.83 | 26.01 | 1247292 | 291 | 724972.34 | 35.46
bas 102 | 92 554 | 3.59 6142 | 66 2172.78 | 5.69
¢2q | 2335 | 94 | 3851 | 297 4032 | 80 215717 | 5.13

ponent model. This model encourages to embed all
the services that a Component may use into the Con-
Containerimp| ja~*—[MACIContainerServices| ~ tajner. To the current design of the C++ implementation

? of the Component/Container model (figure on the left)
we added a new class that is used by the Component to

@m call real-time-related methods (figure to the right). worst case executions for each implementation have ¢4 | 1278 | 193 | 19.21 | 4.28 11555 | 321 1978.72 | 5.02
The main method that was intended to be implemented was the schedul e method, defined in an IDL interface in ACS. We kept an error near to 30 000 % for the ACS Time Service (0,
the interface as similar as possible to the original one, thus providing an easy-to-migrate-to solution. Matter of fact, the class that harmonic clients deployment), and of 8 % for the our
implements the periodic task does not need changes at all. implementation (¢4, harmonic clients deployment).
To run a periodic real-time task, the user must register it through the RTCont ai ner Ser vi ces class. Each task will trigger the creation After the first experiments, and in order to diminish the possible causes of jitter, we tuned the ext 3 partitions of the machines to
of a new thread with real-time priority. Once created, the following steps will be taken: be mounted in asynchronous mode, with a commit interval greater than a single experiment’s duration. This way, we avoid all disk
transfers, maintaining the information in the filesystem cache in RAM, in effect simulating a diskless computer during the execution of
e Optionally, the thread will wait for a fixed amount of time to the experiments, and thus we have a less IRQ-ed system.
start the execution of the periodic task.
[Tt o Then, it calculates the next instant when it should execute the One client Harmonic clients In these experiments, only the f5 requirement (in the one
e e task and sleeps until then using the nanosleep POSIX call. Type Jitter [ps] VMSE [ps] Jitter [ps] VMSE [ps] client depl(?yment) was (ju§t a little) better served by t}_‘e cur-
This call features nanosecond precision, thanks to the high- ACS | RT | ACS | RT ACS | RT ACS RT rent ACS Time Service, while the rest were totally dominated
e precision timers implemented by the Linux RT_PREEMPT ker- 01 62 | 67 | 17.67 2747 | 1977 | 49 | 115996 | 352 | by our implementation. Once again, the harmonic clients
nel. 0, | 2036 | 80 | 31.96 | 32.11 1974 | 46 1133.08 | 30.92 setup showed the worst results for. the A(:,S Time 'Serv1ce,
. . . leulating th 04 749 | 47 | 24.01 | 20.73 | 842251 | 75 | 465753.11 | 37.41 while our 1mPlementat10n stayed.w1th low jitter, w}}}ch even

dos | 2052 | 14 | 3695 | 1.86 1999 | 41 161653 | 6.57 ues of our implementation are well below the 150 [us], so we

41.2:handleTmeout) tD

! o Finally, it will repeat the previous steps until canceled. ba 804 | 59 | 14.17 | 2.05 | 11945 | 36 1477.07 | 3.07 can claim that this Time Service does provide real-time sup-
[rf ; port to ACS, and complies with the ALMA real-time require-
ments.
To schedule the different jobs through time we use the rate monotonic .
algorithm [9]. To assign a priority to each task, we use a logarithmic Pog(T) = Ppin — (W) Taw a Latencies
ful:lCthl’l, whlch depends on 'the period of the glven'task, and'w%th + (log <T1:;’ZZ’)‘:1€§“'(TW>) logyo(T) We also studied the latencies that the system
adjustable maximum and minimum values for both period and priority 10 10 - experimented. The latencies are defined as the s
values (see equation 1). This logarithmic relation handles gracefully the differences between the instant when the call is
different orders of magnitude that the period values can present, and o o made from the scheduling thread and the in-
. . f ips 80 T T T T Avg: 579,08 70000
at the same time deals better w1t}.1 the chffer?nt granqlalﬁlt.les of the two - EH stant when the execution really start (f4;_; —4). ol s
quantities (period values are continuous, while the priorities range from ol T~ 1 o0 . e
0 to 100). w0l | O The figure on the left shows the latencies for the D o0
.) . . } - current Time Service implementation. A high o
For our particular case, we define the minimum and maximum values sl] mean (about 580 [us]) and standard deviation
as follows: Prnaz = 75, Prain = 0, Trnaz = 1[s] and T5yin = 1()'()[;18]‘ The§e £ \\ oo put into evidence the low reliability of this im- -
values are in agreement with the needs of the ALMA project, and, in : \) plementation. These results are due to the huge)

general, are useful for a great variety of requirements. ol \ T e ™™ CORBA call stack that is produced between the ' : ’ : ’ ’ '

Latency [us]

scheduling component and the action handler.
Finally, the red line in the figure represents equation 1 with the parame- 3 J P

ters mentioned above. The green line presents what would be a simple “‘_
linear assignment with the same border conditions. \

In contrast, the figure on the right shows the latencies for the new implementation. Since this new implementation uses direct calls to
the action handler, the latencies are highly minimized, falling to no more than 7 [1s] in the worst case.

[
1e-05 0.0001 0.001 0.01 01 1
Period [s]

- V. . S

/~ Conclusions Future Work)

The Linux RT_PREEMPT kernel shows a much more predictable behavior than Also, the new implementation of the Time Service does provide real-time sup- As a future work we would like to extend the study of our new implementation
the common vanilla Linux kernel, even when the machine is put under the stress port for the ALMA Common Software, at least at the level of the requirements over other POSIX-compliant RTOSs. Since this work was only focused on the
of heavy disk operations, network traffic and CPU-intensive applications. This of the CONTROL subsystem. Thanks to its design and the usage of the POSIX usage of Linux RT_.PREEMPT, other RTOSs were left behind. QNX, for instance,
makes it suitable for hard real-time tasks, such as automatic control systems. Linux specification, our new implementation presents much lower jitter values when would be a good candidate to be studied, but effort should first be spent in order to
RT_PREEMPT has proved to be a good new approach among the open source real- stressing the system with several requests. Even more, in low stressed scenarios support QNX for ACS. Previous work has been done in this matter by the ALMA-
time kernel because its design, keeping its monolithic form, but offering proven real- it also showed better behavior than the original one. This proves that ACS could =~ UTFSM Group, but with not very inspiring results.

time performance on several architectures. This opens a large number of new pos- support real-time operations from user-space, and get rid of the kernel modules By testing our new implementation over other RTOSs would give us the oppor-

sibilities for the Linux world to be present in the control industry. The current large ~ work-around solutions that are currently in use in the CONTROL and CORR sub- tunity to find even better results that those reported in this work, thus offering

activity around the development of this patch is reflected on a quick release cycle, systems. different alternatives to the ALMA Common Software real-time support, and ex-

good technical assistance through mailing list and forums, and a growing commu- tending its capabilities towards being a generic distributed control framework,
knity, supported by the already existent Linux kernel development community. reusable in any other project. J
Acknowledgements References

This work could not have been done without the support of the [1] Chiozzi, G. et al., “The ALMA Common Software, ACS status and developments,” in [Proceedings of ICALEPCS 2005], (2005).
ALMA-CONICYT grant # 31060008. Rodrigo Tobar’s work was [2] Tarenghi, M., “The Atacama Large Millimeter/submillimeter Array: Overview & status,” Astrophysics and Space Science 313, 1-7 (Jan. 2008).
also partially financed by the “Programa de Iniciacién en la Inves- [3] Sommer, H. and Chiozzi, G., “Transparent XML binding using the ALMA Common Software (ACS) container/component framework,” in [Proceedings of the 13th Astronomical Data Analysis Software & Systems Conference], (2003).
tigacion Cientifica” grant. Part of this trip was also financed by [4] Sommer, H., Chiozzi, G., Zagar, K., and Voelter, M., “Container-component model and XML in ALMA ACS,” Advanced Software, Control, and Communication Systems for Astronomy 5496(1), 219-229, SPIE (2004).
the “Direccién General de Investigacion y Postgrado” of the UTFSM. [5] Araya, M. A., Verifying Real-Time Periodic Properties on the ALMA Common Software Time System, Master’s thesis, Departamento de Informatica, Universidad Técnica Federico Santa Maria (May 2008).
Jorge Ibsen and Flavio Gutiérrez have been of great support dur- [6] Rostedt, S. and Hart, D. V., “Internals of the RT patch,” in [Proceedings of the Linux Symposium 20071, (2007).
ing the entire work. [7] Pisano, J., Amestica, R., Juerges, T., and Jeram, B., “Real-Time Linux Migration Proposal,” (Mar. 2009).
[8] Gleixner, T., “Cyclictest.” ht t p: // rt. wi ki . kernel . or g/ i ndex. php/ Cycl i ctest.
[9] Liu, C. L. and Layland, J. W., “Scheduling algorithms for multiprogramming in a hard-real-time environment,”]. ACM 20(1), 46-61 (1973).
[10] Farris, A., Marson, R., and Kern, J., “The ALMA telescope control system,” in [Proceedings of ICALEPCS 2005], (Oct. 2005).

NACJ Atacama Large Millimeter Array

National Astronomical
Observatory of Japan

Contact e-mail: rtobar@csrg.inf.utfsm.cl / For more information about ALMA development and research at UTFSM Computer Systems Research Group, please visit our web site http:/ /alma.inf.utfsm.cl

