
A Reference Architecture Specification of a
Generic Telescope Control System

JOAO S. LÓPEZ1, RODRIGO J. TOBAR1, TOMAS STAIG1, DANIEL A. BUSTAMANTE1,
CAMILO E. MENAY1, MAURICIO A. ARAYA2 AND HORST H. VON BRAND1

1Computer Systems Research Group, Universidad Técnica Federico Santa Marı́a (UTFSM), Valparaı́so, Chile
2Institut National de Recherche en Informatique et Automatique (INRIA), Nancy, France

ABSTRACT
A Telescope Control System (TCS) is a software responsible of controlling the hardware that an astronomical observation needs. The automation and sophistication
of these observations has produced complex systems. Currently, a TCS is compound by software components that interact with several users and even with other
systems and instruments.

Each observatory has successfully developed a wide spectrum of TCS solutions for their telescopes. Regardless the mount, there are common patterns in the software
components that all these telescopes use. As almost every telescope is custom designed, these patterns are reimplemented again and again for each telescope. This is
indeed an opportunity of reuse and collaboration.

The Generic Telescope Control System (gTCS) pretends to be a base distributed framework for the development and deployment of the TCS of any telescope,
independent of its physical structure, the type of mount and instrumentation that they use. This work presents an architecture specification explained through two
complementary approaches: the layers perspective and the deployment perspective. The first approach defines a set of layers, one on the top of the other, offering
different levels of abstraction. Meanwhile the deployment perspective intends to illustrate how the system could be deployed, focused on the distributed nature of
the devices.

The Generic TCS Problem

Overview

Control systems have two basic entry points: the users and the devices. In a TCS domain, users and devices are hetero-
geneous: users with various levels of expertise, and devices with different protocols and access levels. Therefore, to
understand the problem we must identify the diverse nature of users and devices.

The Users

Users can be classified by the usage that they give to the
system, or in other words, to which profile they belong.
Profile examples:

• Observation Control: The control of the observa-
tion itself. Includes all the variables in the domain
of the Astronomer, and all the technical and spe-
cific details of the telescopes are hidden.

• Calibration and Startup: The automatic or man-
ual process of calibrating the telescope, also in
high-level domain, but including the specific de-
tails of the telescope.

• Maintenance: The low-level variables of the tele-
scope, with a detailed control of all the devices and
software states.

• Monitoring: The summary of the telescope oper-
ations to audit, check the behavior of the devices,
etc. This may be a mixture of specific logs with
general information of the observation.

TCS
A

TCS
B

Driver A1 Driver A2 Driver A3 Driver B1Driver C

S
E

S

S
W

EW

N
W N

E

N

Meteo

Control

Astronomer

Telescope Operator

Science Operations

Engineer

Application

Application

Application

Application

Application

Application

Application

Custom

Coordination

Software

The problem is that several users could use more than one profile. Then, building an application for each profile is
not the most desired approach. Therefore, the existing TCSs often build very complex user interfaces that have all the
information that the user may need. This turns the application unmanageable for unexperienced users. Fortunately,
defining these profiles helps to identify which is the scope of the TCS and select the features that the system will need
in a user-independent fashion.

Devices Scope

The devices of a telescope are diverse. Only in the axis control domain each telescope mount/technology has different
devices with different protocols and configurations. Even if two telescopes has the same hardware, the firmware or
other vendor software could vary. If we add to the equation mirror control, active optics and meteorologic stations,
the set of devices turns unmanageable. Therefore, defining the possible set of devices is not a practical approach.
A simpler approach is to group the devices into instruments that do a specific task. In an observatory there are two
general types of hardware devices:

• Technical Instruments: All instrument that does not directly produce scientific data, such as the telescope, a
meteorologic station, the active optics, an autoguiding CCD, etc.

• Scientific Instruments: All instrument that produces scientific data that the astronomer will use, such as the
main CCD, a spectrograph, an interferometer, filter wheels, etc.

The scope of a TCS is limited to technical instruments and their devices. Also, a TCS must provide all the interfaces to
connect the software in charge of managing the scientific instruments.

Proposed Architecture Specification

Layers perspective

The layers perspective presents different levels of abstrac-
tion (higher layers offer higher abstractions). This per-
spective can be seen as the network stack (such TCP/IP)
where each layer offers services to the upper one, and
the upper one only uses the lower one.
This view allow us to have an idea of which are the dif-
ferent abstractions that the system needs, and how to
encapsulate this information in different layers.

Drivers Responsible of the communication of the sys-
tem with external entities.

Sensors/Actuators Considering a device as a single
monitor/control point associated with a unique
property to be read/written, Sensors/Actuators
provides software abstractions of physical de-
vices, without considering any interaction with
any other device.

Composite devices It represents a full device used on
the astronomy domain that can be composed by a
given number of sensors and/or actuators.

Observation control It offers the abstraction of a full equipped telescope. This is done by grouping different com-
posite devices, and using them in an intelligent way, in order to obtain data, collaborate, and finally do control
over the necessary composite devices.

Deployment perspective

The deployment perspective intends to illustrate how the
architecture can be used in a distributed way, showing
the geographical deployment of the system, and the
bus that communicates its components.

Each computer will execute different parts of the
system and we can distribute one layer through several
computers. This is the capability of the system to have
its components spread over a network of computers,
while working together.

The Information Service can be seen as a software
component accessible through any part part of the
system. It has two main responsibilities: to know which
software components are available in the system and to
offer the possibility to retrieve information about the
classes, interfaces, methods, parameters and related
information from all the components of the system.

PC 6PC 5PC 4

PC 3PC 2PC 1

Communication Bus

Reference technologies

The Control System for an Amateur Telescope [1] project, a TCS constructed over ALMA Common Software
(ACS) [2,3] was used as an initial approach to the problem and reference architecture.
To exemplify the proposed reference, existing technologies that are implementing some aspects of the proposal
are analyzed.

ALMA Common Software If we consider the Container/Component [4] model present on ACS, each com-
posite device can be managed by an ACS Characteristic component. Through the use of states, excep-
tions and container lifecycle we are able to manage the lifecycle of the whole gTCS. Currently ACS uses
CORBA, which is an example of a communication bus. The information service can be obtained through
the Manager (responsible for the management of containers, components and clients) and the informa-
tion provided by the Interface Repository (IR) and the Configuration Database (CDB).

VLT Common Software The VLT control software [5] uses software modules, sharing benefits of re-usability.
These modules are a basic item for the detailed design, development and integration of software. The
software architecture is distributed over several workstations that provide high level and coordination
services. The communication is based on a message system and a distributed hierarchical database.

Java Remote Method Invocation The Java Remote Method Invocation (RMI) [6] is a Java approach to sup-
port a model of a distributed object application. It provides remote communication between programs
written in Java. It allows applications to call methods located remotely, sharing resources and processing
load across systems.

Acknowledgements

This work was supported by ALMA-CONICYT Fund project

#31060008 “Software Development for ALMA: Building Up Expertise to

Meet ALMA Software Requirements within a Chilean University”, under

development at Universidad Técnica Federico Santa Marı́a.

References
[1] Tobar, R. et al., “An amateur telescope control system towards a generic telescope control model” in [Proceedings of SPIE - Advanced Software and Control for Astronomy 2008 ], (2008).
[2] Chiozzi, G. et al., “The ALMA Common Software: A developer friendly CORBA based framework” in [Proceedings of SPIE - Advanced Software and Control for Astronomy 2004 ], (2008).
[3] Chiozzi, G. et al., “Application development using the ALMA Common Software” in [Proceedings of SPIE - Advanced Software and Control for Astronomy 2006 ], (2006).
[4] Sommer, H. et al., “Container-component model and XML in ALMA ACS” in [Proceedings of SPIE - Advanced Software and Control for Astronomy 2004 ], (2004).
[5] Chiozzi, G., “An object-oriented event-driven architecture for the VLT Telescope Control Software” in [Proceedings of ICALEPCS 1995 ], (1995).
[6] Grosso, W., “Java RMI”, O’Reilly & Associates Inc, (2002).

Atacama Large Millimeter Array

Contact e-mail: jslopez@csrg.inf.utfsm.cl / For more information about ALMA development and research at UTFSM Computer Systems Research Group, please visit our web site http://alma.inf.utfsm.cl


