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Introduction 

Next-generation astronomy research facilities will generate new 
challenges for data storage, access, analysis and system 
monitoring, bringing astronomy into the Petascale Data Era. But 
even today, astronomical knowledge is not growing at the 
same rate as the data. Scientific visualization is a fundamental, 
enabling technology for knowledge discovery. Despite recent 
progress, many current astronomy visualization approaches will 
be seriously challenged by, or are completely incompatible 
with, the Petascale Data Era.  With an emphasis on developing 
new approaches compatible with data from the Square 
Kilometer Array and its Pathfinders, the goal of this work is to 
advance the field of astrophysical visualization in preparation for 
the Petascale Era.  

Challenges and Design Objectives 

Our Framework 

Multi-Spectral Astronomical Data 

Multispectral data can be considered as a 4D data volume 
where three dimensions are associated to position allocation 
(two dimensions for the spatial position in sky coordinates and 
one dimension for the wavelength) and one dimension for the 
flux density. The data cube can be considered as a stack of 
images where each image presents a sky portion over a small 
wavelength range (Δλ).  
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Our main goal is to enable astronomers to visualize large 
spectral data cubes of the size that will be generated from 
Australia SKA Pathfinder (ASKAP) (at least 1TB of data). To 
achieve this target we designed a framework that utilizes the 
latest available hardware technologies combined with the 
latest software infrastructure.  
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Based on that, the following design decisions were taken: 

1.Use ray-casting volume rendering as our visualization 
technique. 

2.Build a mixed framework based on a distributed GPU 
architecture to visualize such cubes. 

Distributed GPU Framework 

Why Volume Rendering? Why GPU? 

Our design objectives were: 
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Our distributed GPU framework combines the processing 
power of multiple GPU nodes to speed-up and enhance 
the spectral line cube visualization process.  This framework 
uses Message Passing Interface (MPI), Multi-threading, and 
CUDA to allow many GPUs to work on the same problem. 



Web-site: http://astronomy.swin.edu.au   More information: E-mail ahassan@swin.edu.au or cfluke@swin.edu.au 

Main Framework Modules 

This figure shows a cross-functional diagram containing the 
main components of our proposed framework. These 
components are partitioned based on their main 
functionality into:  

• Scheduling module: responsible for managing and 
controlling the overall process. 

• GPU module: includes different execution kernels and utilizes 
the parallelization paradigm of the GPUs. 

• Scene integration module: responsible for generating the 
final display output by combining the output of the 
contributing GPUs. 

• I/O and User interaction modules: support the user’s 
interactivity and change the output according to the user’s 
input. 

Sample Output  Framework workflow 

Conclusion: 
The focus of this work is to improve multi-spectral data visualization to cope with the vast amount of 
data to be produced by ASKAP and similar facilities. By employing GPUs combined with distributed 
processing, we are aiming to implement a scalable system capable to interactively visualize “greater 
than memory” astrophysical datasets.  

A.  The spectral line cube will be partitioned into a set of 
smaller  sub-cubes.  

B.  The scheduler module will assign these sub-cubes to the 
processing Nodes/GPUs. 

C.  Each GPU will apply ray-tracing volume rendering to map 
each output pixel into a color (RGBA) based on a pre-
selected transfer function. 

D.  The process of volume rendering will produce (N) images 
with the same resolution as the output screen(s). 

E.  The scene interation module will reapply the same transfer 
function to these images to combine them into the final 
output. 

F.  The final output will be directed to the output display(s).  

Scene Integration  
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An expanding HI shell from the Canadian Galactic Plane Survey observed with 
the Dominion Radio Astrophysical Observatory interferometer. X and Y axes are 
Galactic longitude and latitude (714 x 520 pixels), and the Z axis is velocity with 
respect to local standard of rest (30 channels).  Note that axis labels have yet to 
be implemented. Data courtesy Jayanne English (U.Manitoba). 

115.27 GHz 12CO(J=1-0) observation of EP Aqr obtained with the IRAM 
interferometer (Winters et al. 2007, A&A, 475, 559; VizieR On-line Data Catalog: 
J/A+A/475/559). The spectral cube comprises 26 velocity channels (Z axis) of 
256x256 sky pixels. 

Neutral hydrogen (21cm) observation of part of the Ursa Major galaxy cluster, 
made with the Lovell radio-telescope at Jodrell Bank, Manchester. The image is 
157x148 sky pixels by 148 velocity channels. Data courtesy Virginia Kilborn 
(Swinburne). 


