
GPU-Based Volume Rendering of Noisy Multi-Spectral Astronomical Data

A. Hassan, C.J.Fluke, D.G.Barnes
Swinburne Centre for Astrophysics & Supercomputing, Melbourne, Victoria, Australia, 3122

Introduction

Next-generation astronomy research facilities will generate new
challenges for data storage, access, analysis and system
monitoring, bringing astronomy into the Petascale Data Era. But
even today, astronomical knowledge is not growing at the
same rate as the data. Scientific visualization is a fundamental,
enabling technology for knowledge discovery. Despite recent
progress, many current astronomy visualization approaches will
be seriously challenged by, or are completely incompatible
with, the Petascale Data Era. With an emphasis on developing
new approaches compatible with data from the Square
Kilometer Array and its Pathfinders, the goal of this work is to
advance the field of astrophysical visualization in preparation for
the Petascale Era.

Challenges and Design Objectives

Our Framework

Multi-Spectral Astronomical Data

Multispectral data can be considered as a 4D data volume
where three dimensions are associated to position allocation
(two dimensions for the spatial position in sky coordinates and
one dimension for the wavelength) and one dimension for the
flux density. The data cube can be considered as a stack of
images where each image presents a sky portion over a small
wavelength range (Δλ).

zeiss.m
agnet.fsu.edu

Our main goal is to enable astronomers to visualize large
spectral data cubes of the size that will be generated from
Australia SKA Pathfinder (ASKAP) (at least 1TB of data). To
achieve this target we designed a framework that utilizes the
latest available hardware technologies combined with the
latest software infrastructure.

Our
Framework

Multi-Threading
Environment

Efficient GPU
Implementation

Multi-GPU
Model

Distributed
Rendering

(MPI)

Volume
Rendering

(Ray Tracing)

Design Decisions and Implementation tools

Negative Positive

Global
Picture of the
data cube

No need for
a previous

target

Easy to
understand

Computationally
Intensive

Relatively Hard to implement

Negative Positive

Massively
Parallel

Architecture

Peak
Performance

> 4 TFlops

Cheaper

Special
development

paradigm

No Message
Passing
Model

Based on that, the following design decisions were taken:

1.Use ray-casting volume rendering as our visualization
technique.

2.Build a mixed framework based on a distributed GPU
architecture to visualize such cubes.

Distributed GPU Framework

Why Volume Rendering? Why GPU?

Our design objectives were:

Bus Network Communication

GPU Comm. Thread

MPI Network Card

GPU Comm. Thread

MPI Network Card

GPU

Comm. Thread

MPI

GPU

Comm. Thread

GPU

Comm. Thread

GPU

Comm. Thread

Network Card M
ultiple G

PU
 N

ode
Single G

PU
 N

ode Si
ng

le
 G

PU
 N

od
e

Our distributed GPU framework combines the processing
power of multiple GPU nodes to speed-up and enhance
the spectral line cube visualization process. This framework
uses Message Passing Interface (MPI), Multi-threading, and
CUDA to allow many GPUs to work on the same problem.

Web-site: http://astronomy.swin.edu.au More information: E-mail ahassan@swin.edu.au or cfluke@swin.edu.au

Main Framework Modules

This figure shows a cross-functional diagram containing the
main components of our proposed framework. These
components are partitioned based on their main
functionality into:

• Scheduling module: responsible for managing and
controlling the overall process.

• GPU module: includes different execution kernels and utilizes
the parallelization paradigm of the GPUs.

• Scene integration module: responsible for generating the
final display output by combining the output of the
contributing GPUs.

• I/O and User interaction modules: support the user’s
interactivity and change the output according to the user’s
input.

Sample Output Framework workflow

Conclusion:
The focus of this work is to improve multi-spectral data visualization to cope with the vast amount of
data to be produced by ASKAP and similar facilities. By employing GPUs combined with distributed
processing, we are aiming to implement a scalable system capable to interactively visualize “greater
than memory” astrophysical datasets.

A.  The spectral line cube will be partitioned into a set of
smaller sub-cubes.

B.  The scheduler module will assign these sub-cubes to the
processing Nodes/GPUs.

C.  Each GPU will apply ray-tracing volume rendering to map
each output pixel into a color (RGBA) based on a pre-
selected transfer function.

D.  The process of volume rendering will produce (N) images
with the same resolution as the output screen(s).

E.  The scene interation module will reapply the same transfer
function to these images to combine them into the final
output.

F.  The final output will be directed to the output display(s).

Scene Integration

Screen 1

Screen 3

Screen 2

Screen 5

Screen 4

Screen 6

An expanding HI shell from the Canadian Galactic Plane Survey observed with
the Dominion Radio Astrophysical Observatory interferometer. X and Y axes are
Galactic longitude and latitude (714 x 520 pixels), and the Z axis is velocity with
respect to local standard of rest (30 channels). Note that axis labels have yet to
be implemented. Data courtesy Jayanne English (U.Manitoba).

115.27 GHz 12CO(J=1-0) observation of EP Aqr obtained with the IRAM
interferometer (Winters et al. 2007, A&A, 475, 559; VizieR On-line Data Catalog:
J/A+A/475/559). The spectral cube comprises 26 velocity channels (Z axis) of
256x256 sky pixels.

Neutral hydrogen (21cm) observation of part of the Ursa Major galaxy cluster,
made with the Lovell radio-telescope at Jodrell Bank, Manchester. The image is
157x148 sky pixels by 148 velocity channels. Data courtesy Virginia Kilborn
(Swinburne).

