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Terry Pratchett in Equal Rites (1987)

Animals never spend time dividing experience
into little bits and speculating about all the bits
they've missed. The whole panoply of the
universe has been neatly expressed to them as
things to = FOUAL RS

(a) mate with,

(b) eat,

(c) run away from, and
(d) rocks.




Ancient Astronomical context

(a) mate with,
(= speculative/sexy science)
(b) eat,
(= bread and butter objects)
(c) run away from,
(= crazy cosmologies)
and
(d) rocks
(= transients)

 Besides the known unknowns, we
want to look for unknown unknowns

 We are forced to classify
* And in Real-Time!



Transformations in astronomy
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Data sizes and number of parameters

Moore’s law. Yes, but data sizes? 0.1 -> 10x TB

LSST: wide, fast and deep

Hundreds of parameters for tens of millions of
objects

Many studies possible (charting the solar
system, Galaxy, universe at different scales and
depths)

One of the exciting, emerging sub-field is of
temporal astronomy



The Palomar-Quest Event Factory

tonight baseline
Detect ~ 1 -2 *10° sources ~ ,

per half-night scan

the baseline sky ' e

Find ~ 103 apparent
transients (in the data)

Compare with e =

W
& X
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Remove instrum.
artifacts

Identify ~ 2 - 4 *10? real
transients (on the sky)

Remove
asteroids

Identify 1 10 pos.S|bIe Classification and follow-up
Astrophysical transients




Synoptic skysurveys: Opening up new dimensions
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Being tackled in various ways:
* BNs

* GPRs

(using colors, lightcurves, and
contextual information like
Galactic latitude, proximity to a
galaxy etc.)
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Challenges (besides data mining):

A better view

e Lots of follow-up observing .
of the skies

* Selecting candidates to follow

(from tens of thousands per night) wm——=
* Inreal-time!



Towards Automated
Event Classification

A necessity for large synoptic

surveys

Event
parameters:
m,(t), m,(t),...
a, o, U, ..
image shape...
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P(dM) = ...
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Expert and ML generated priors

colors

lightcurves
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Classification
probabilities
(evolving,
iterated)



Transient classification mantra

Obtain a couple of epochs in one or more filters
Assign probabilities for different classes

Choose [to do more] observations (filters,
wavelengths) for best discrimination

Feed the new observations back in
Revise probabilities, choose observations, ...
Based on confirmed class revise priors



54771_1
(2008-11-01 UT)

54771.1764189: 17.59 (0.04) USNO:
0

Status

» Started with CRTS (P60 colors/lightcurves)
* Applying to PTF (P60 colors/spectra)

54771.1781076: 17.01 (0.15) USNO:
0

54771.1791001: 16.66 (0.11) USNO:
0

54771.1800937: 16.42 (0.05) USNO:
0

54773_1
(2008-11-03 UT)

54773.477629: 17.70 (0.14) UéNO: 0

54773.4793165: 17.04 (0.08) USNO:

54773.4803113: 16.67 (0.06) USNO:

54773.4813055: 16.47 (0.15) USNO:

http://www.astro.caltech.edu/P60FollowUp/



Radio + X-ray

TB12291070574110368




Building Bayesian Networks

Local dependencies,
irrelevancies are evaluated
using modeling

Priors, likelihoods are
obtained

Directed Acyclic Graph is
constructed

Data define network
No “training” necessary

Incidental
parameters

Phenomenology
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Class

Colors Other observed
parameters

Radio, for instance



8% CV classified as SN, 65% of objects classified as CV are actually CV

3colors+ghb  CV (0.65) SN (0.71) BL (0.33) REST (0.23)
ary

SN 023 o6 012 019

REST 0.34 0.18 0.21 0.26

Priors based on CRTS data.
Delta-m > 2



8% CV classified as SN, 65% of objects classified as CV are actually CV

3colors+ghb  CV (0.65) SN (0.71) BL (0.33) REST (0.23)
ary

SN 023 o6 012 019

REST 0.34 0.18 0.21 0.26

3,y,wW 0.65 0.71 0.33 0.23

2+y,W 0.65 0.78 0.41 0.19

3,y,40-10 0.73 0.82 0.37 0.18



* Adding gb helps (of course)

* Having an additional colors is good
(generally)

 More context info helps (distance to
nearest galaxy, for instance)

3 colors +gh+ CV (0.74) SN (0.84) BL (0.31) (1-contam.)
galaxy prox.
(WTA)
CcV 0.74 0.08 0.16
SN 0.21 0.50 0.27
BL 0.19 0.00 0.80
completeness




Using GPR with lightcurves

Graph of expected data using fixed hyperparameters: (4.02, 1.0, 0.1)
e T T Given several epochs and corresponding

magnitudes, estimate the likelihood of a
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Figure 3: Estimation of y. (solid line) for a function with (a) short-term and long-term
dynamics, and (b) long-term dynamics and a periodic element. Observations are shown
as crosses.
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log marginal likelihood
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Relative Fit

Posterior Sample (residual + mean)
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Fusion Module
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Incidental Colors

parameters -4 -> 4 (10 bins each)

Phenomenology
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Portfolios, semantic linking and skyalert
(http://www.skyalert.org)

* Active follow-up

— New images
— New colors

— Better astrometry

— Spectra

Passive follow-up

(annotators)

— Galaxy distance

— Classification
* Program

* Expert
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(event template)

Original
detection

Archive
follow-up

Archive
follow-up
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Events

(template
instance)

Catalina Sky Survey
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stellarity
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Follow-up (for missing values)

Such that it will help discriminate better

Serve probabilities so that consumers can choose their types
of transients

Widest possible models
. . Telescope 1: P(x,,y | X,)
(resource uniformity) " Updated P(y | X,, X,)

(well connectedness)

Initial P(y | x,) el _ -
H=1.31
I-...II Telescope 2: P(xg,y | X,) Updated P(y | X, Xg)
H=1.82

/), H=179



Towards the Glass Bead Game

VOEvent]

7/ FIRST, NVSS, NED,
SIMBAD catalogs
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[

Y

Sextractor output

=
i

————

is an image of
-~ is not found in
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_______ is derived from
—--—-- |5 a spectrum of
———- 5 a test of

Natural and artificial classifiers; varied inputs; unified output
Difficult but exciting problem
To boldly classify what no one has classified before ...



