Astronomical Data Compression: Algorithms & Architectures

Rob Seaman – National Optical Astronomy Observatory
William Pence – NASA / Goddard Space Flight Center
Richard White – Space Telescope Science Institute
Séverin Gaudet – National Research Council Canada

See also poster 57, "Optimal Compression Methods for Floating-point Format Images", Pence, et al.

Agenda

- Overview Rob
- Tile compression and CFITSIO Bill
- Experiences with FITS compression in a large astronomical archive – Séverin
- Lossy compression Rick
- Open discussion
- Door prize!

Thanks to Pete Marenfeld & Koji Mukai

Overview

- FITS tile compression
- Rice algorithm
- CFITSIO / FPACK
- IRAF and community software
- The ubiquity of noise: optimal DN encorning
- The role of sparsity: compressive sensing
- An information theory example

Overview

- FITS tile compression
 - Rice algorithm
- CFITSIO / FPACK
- IRAF and community software
- The ubiquity of noise: optimal DN encoding
- The role of sparsity: compressive sensing
- An information theory example

References

Too many ADASS presentations to list

• See references within:

"Lossless Astronomical Image Compression and the Effects of Noise", Pence, Seaman & White, PASP v121 n878 2009,

http://arxiv.org/abs/0903.2140v1

FITS tile compression

- ADASS 1999 (Pence, White, Greenfield, Tody)
- FITS Convention v2.1, 2009
- Images mapped onto FITS binary tables
- Headers remain readable
- Tiling permits rapid RW access
- Supports multiple compression algorithms
- First & every copy can be compressed

Rice algorithm

- Fast (difference coding)
 - near optimum compression ratio
 - throughput is key, not just storage volume
- Numerical, not character-based like gzip
- Depends on pixel value so BITPIX = 32 compresses to same size as BITPIX = 16

CFITSIO / FPACK

- fpack can be swapped in for gzip
 & funpack for gunzip
- Library support (eg, CFITSIO) allows jpeg-like access – compression built into the format
- More options means more parameters setting appropriate defaults is key

IRAF and community software

- Tile compression can & should be supported by all software that reads FITS
- Instrument and pipeline software may benefit strongly from writing compressed FITS
- Transport & storage always benefit
- IRAF fitsutil package in beta testing
- Work on a new IRAF FITS kernel pending
- VO applications and services

The ubiquity of noise

- Noise is incompressible
- Signals are correlated
 - physically
 - instrumentally
- Shannon entropy: $H = -\Sigma p \log p$
 - depends only on the probabilities of the states
 - measures "irreducible complexity" of the data

Optimal DN encoding

- CCD "square-rooting"
- Variance stabilization, more generally
 - many statistical methods assume homoscedasticity
 - generalized Anscombe transform
- Foundations of the empirical world view:
 - ergodicity (statistical homogeneity)
 - Markov processes (memoryless systems)
- http://www.aspbooks.org/publications/411/101.pdj

The role of sparsity

- For most astronomical data, compression ratio depends only on the background noise
 - Sparse signals are negligible (in whatever axes)
 - Noise is incompressible

R = BITPIX /
$$(N_{bits} + K)$$

K is about 1.2 for Rice

Compression ratio

Compression correlates closely with noise

Distinctive functional behavior

For three very different comp. algorithms

For flat-field and bias exposures as well as for science data

That is, for pictures of:
the sky
a lamp in the dome
no exposure at all

Signal doesn't matter!

天文データの圧縮

A better compression diagram

Compressive sensing

- Real world data are often sparse (correlated)
- Nyquist/Shannon sampling applies broadly
- But we can do even better if we sample against purpose-specific axes:

http://www.dsp.ece.rice.edu/cs
http://nuit-blanche.blogspot.com

- Herschel proof of concept, Starck, et al.
- CS is about the sampling theorem
- Optimal encoding is about quantization

An information theory example

Compression = optimal representation

A. 11 coins all the same

- + 1 coin, identical except for weight
- B. Scale to weigh groups of coins
- C. In only 3 steps, must identify:

the coin that is different and whether it is light or heavy

"The 12-balls Problem as an Illustration of the Application of Information Theory" – R.H. Thouless, 1970, Math. Gazette, v54n389.

How to solve a problem

- First, define the problem
 - second, entertain solutions
 - third, iterate (don't give up)
- More basic yet, what is the goal?
 - to solve the problem?
 - or to understand how to solve it?
- Stating a problem constrains its solutions

What do we know?

- One bit discriminates two equally likely alternatives
 To select between N equal choices, N_{bits} = log₂ N
- For 12-coin problem, $N_{bits} = log_2 (12) + 1 = log_2 24$ (must also distinguish *light* vs. *heavy*)
- Information provided in each measurement is log₂ 3 (3 positions for scale: *left, right, balanced*)
- For three weighings, $W_{bits} = log_2 3^3 = log_2 27$ Meets necessary condition that $W_{bits} >= N_{bits}$

Necessary, but not sufficient

A strategy is also necessary such that

$$W_{bits} >= N_{bits}$$
 (remaining) is satisfied at each step to the solution

N_{bits} is the same thing as the entropy H

$$H = -\Sigma p log p \quad where \quad p = 1/N$$

$$= -\Sigma (1/N) log (1/N) = (\Sigma (1/N)) log N = log N$$

$$H = log_2 N \quad (in bits)$$

What else do we know?

- Physical priors!
 - only one coin is fake
 - astronomical data occupy sparse phase space
- FITS arrays = images (physical priors)
 - of astrophysical sources
 - taken through physical optics
 - recorded by physical electronics
 - digitization is restricted by information theory
 - possessing a distinctive noise model

Observations about observations

- The sequence of three measurements can occur in any order
- The systematization of the solution occurs during its definition, not at run time

Try it yourself

http://heasarc.gsfc.nasa.gov/fitsio/fpack

http://www.mapsofconsciousness.com/12coins